Kleinheubacher Berichte

Band 35

Vorträge und Berichte der gemeinsamen Tagung
des U.R.S.I.-Landesausschusses in
der Bundesrepublik Deutschland
und der ITG-Fachausschüsse
1.1 Informations- und Systemtheorie,
2.5 Wellenausbreitung,
5.4 System- und Schaltungstechnik und
5.5 Integrierte Elektronik

Kleinheubach 1991

1992

Deutsche Bundespost Telekom · Forschungsinstitut
Postfach 1000 03 · Am Kavalierlesand 3 · 6100 Darmstadt

ISSN 0343-5725
<table>
<thead>
<tr>
<th>Name</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann, G.</td>
<td>Nichtlineare zirkular polarisierte Alfvén Wellen in einem warmen, mehrkomponentigen Plasma</td>
<td>185</td>
</tr>
<tr>
<td>Suchy, K.</td>
<td>Geometrical optics in inhomogeneous nonstationary absorbing anisotropic media</td>
<td>191</td>
</tr>
<tr>
<td>Sabzevari, B.</td>
<td>Chaos in Plasmen</td>
<td>207</td>
</tr>
<tr>
<td>Piel, A.</td>
<td>Diskussionsleitung: K. Suchy</td>
<td></td>
</tr>
<tr>
<td>Klinger, T.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timm, R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glämmel, K.H.</td>
<td>Die Protonen-Sprung-Resonanz-Instabilität als möglicher Anregungsmechanismus für Riesenausprägungen</td>
<td>217</td>
</tr>
<tr>
<td>von Seggern, M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stein, R.</td>
<td>Relativistic Dynamics of Electrically Charged Particles in Extremely Strong Plane Wave Fields</td>
<td>225</td>
</tr>
<tr>
<td>Korth, A.</td>
<td>Solitäre Wellen in der Mesosphere</td>
<td>255</td>
</tr>
<tr>
<td>Thielheim, K.O.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widdel, H.-U.</td>
<td>Langzeit-trends in Ionosondendaten als mögliches Indiz einer anthropogenen Beeinflussung der Erdatmosphäre</td>
<td>263</td>
</tr>
<tr>
<td>Bremer, J.</td>
<td>Ein "Differenz-Doppelfrequenz-Experiment" für Incoherent Scatter Radars</td>
<td>273</td>
</tr>
</tbody>
</table>

Dienstag, 05.10.91

<table>
<thead>
<tr>
<th>Name</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wulczek, J.</td>
<td>Diskussionsleitung: F. Keilmann</td>
<td></td>
</tr>
<tr>
<td>U.</td>
<td>Elektromagnetische Feldwechselwirkungen mit dem Immunsystem: Die Rolle von Kalzium-Ionen</td>
<td>283</td>
</tr>
<tr>
<td>Lercel, A.</td>
<td>Künstliche schwache Magnetfelder reduzieren die Melatonin Synthese im Pinealorgan: Zelluläre Mechanismen und Implikationen</td>
<td>291</td>
</tr>
<tr>
<td>Bumann, J.</td>
<td>Die Wirkung niederfrequenter elektromagnetischer Wellen auf die Nosokraktion</td>
<td>297</td>
</tr>
<tr>
<td>Goodman, R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henderson, A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diskussionsleitung: J. Wulczek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaiser, F.</td>
<td>Biologische Systeme und nichtlineare Dynamik: periodische Prozesse unter dem Einfluß schwacher externer Felder</td>
<td>301</td>
</tr>
<tr>
<td>Eichwald, C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autor</td>
<td>Titel</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Keilmann, F.</td>
<td>Elektromagnetische Beeinflussung chemischer Abläufe durch Wechselwirkung mit dem Elektronenspin</td>
<td></td>
</tr>
<tr>
<td>Grundler, W.</td>
<td>Frequenz- und Intensitätsabhängiger Einfluss von Mikrowellen auf das Wachstum von Einzelzellen</td>
<td></td>
</tr>
<tr>
<td>van Amelsfort, A.M.J. Scharten, T.</td>
<td>Identification of electromagnetic signals as stimuli in electromagnetic stimulation of living tissue</td>
<td></td>
</tr>
<tr>
<td>Bünker, M. Wasiljeff, A.</td>
<td>Zur Berechnung niederfrequenter elektrischer Felder um beliebig geformte rotationssymmetrische Körper - Anwendung auf Modell des Menschen</td>
<td></td>
</tr>
<tr>
<td>Diskussionsleitung: K. H. Glüßmeier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lühr, H.</td>
<td>Magnetische Störungen und ihr Einfluss auf Kommunikationssysteme</td>
<td></td>
</tr>
<tr>
<td>John, W. Remmert, R.</td>
<td>Parameterberechnung für Leiterplatten- und Hybridverdrahtungen mit Hilfe der Boundary Element Method</td>
<td></td>
</tr>
<tr>
<td>John, W. Theune, D. Thiele, R.</td>
<td>Konzept eines Werkzeuges zur EMV-gerechten Verdrahtung von Leiterplatten</td>
<td></td>
</tr>
<tr>
<td>Singer, H. Bruns, H.-D. Mader, T.</td>
<td>Analyse elektromagnetischer Felder mit Oberflächenstromsimulation</td>
<td></td>
</tr>
<tr>
<td>Diskussionsleitung: D. Wolf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>König, H.L. Kulzer, R. Betz, H.-D.</td>
<td>Aufbau einer Meßstation zur breitbandigen Untersuchung von VLF-Atmospherics</td>
<td></td>
</tr>
<tr>
<td>Örményi, I.</td>
<td>Einwirkung von 3 Hz niederfrequenten elektromagnetischen Feldern (ELF-sferica) auf den Menschen in verschiedenen Lebensbereichen</td>
<td></td>
</tr>
<tr>
<td>Hasse, L.</td>
<td>1/fα Noise Simulation</td>
<td></td>
</tr>
<tr>
<td>Kreß, D.</td>
<td>Einige signaltheoretische Nährungsbeziehungen</td>
<td></td>
</tr>
</tbody>
</table>
Elektromagnetische Feldwechselwirkungen mit dem Immunsystem: Die Rolle von Kalziumionen.

von

Jan Wallacek

Research Medicine and Radiation Biophysics Division
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

und

Neurobiology Research Program
Jerry I. Pettis Memorial Veterans Hospital
Loma Linda, CA 92357, USA

Zusammenfassung

Abstract

There exists experimental evidence from a number of laboratories indicating that low-frequency electromagnetic fields can modify some immunological parameters in organisms. In particular, several independent experiments using isolated immune cells have demonstrated that important cellular processes can be affected by nonthermal intensities of electromagnetic fields under selected experimental conditions. The reported cellular effects include field-induced alterations in calcium metabolism, RNA transcription or DNA synthesis. Our own work focuses on studying the role of calcium-dependent signal transduction processes in the mediation of field effects on lymphoid cells as a possible fundamental mechanism of interaction. This research has shown that calcium transport across the cell membrane of rat lymphocytes can be significantly influenced upon application of nonthermal intensities of extremely-low-frequency magnetic fields after 60 min. Additional experiments have demonstrated a strong dependence of the observed field effects on both the physical exposure parameters as well as on the biological status of the field-exposed cellular system. The results thus far suggest that the electromagnetic modulation of cellular calcium signals could play a major role in the mediation of nonthermal field effects on the immune system.

1. Einleitung

Die wahrscheinlichen Gründe für das steigende Interesse an dieser Forschungsrichtung sind folgende: (1) eine rasch zunehmende Anzahl entsprechender experimenteller Ergebnisse wird jedes Jahr publiziert und mögliche theoretische Erklärungen für die beschriebenen Effekte werden erarbeitet (für einen Überblick siehe Blank und Findl, 1987; Adey, 1988; Fröhlich, 1988; Wilson et al., 1990); (2) die Ergebnisse, die die Wirksamkeit niedrigfrequenter elektromagnetischer Felder in der klinischen Anwendung, insbesondere bei nichtbehebbenden Knochenbrüchen, bestätigen, müssen heute sehr ernst genommen werden (Bassett, 1989); (3) die US-Umweltschutzbehörde EPA (Environmental Protection Agency) hat nach einer Analyse von über 30 epidemiologischen Studien festgestellt, dass eine statistisch signifikante Korrelation zwischen elektromagnetischer Feldexposition und erhöhtem Krebsrisiko besteht (Poul, 1990; Shulman, 1990); auch der zuvor im Juni 1989 veröffentlichte Bericht der ODA (Office of

2. Die Wirkung elektromagnetischer Felder auf das Immunsystem

3. Die mögliche Wirkung elektromagnetischer Felder auf kalsiumvermittelte zelluläre Signaltransduktionsvorgänge

Unsere bisherigen Arbeiten beschäftigen sich zunächst mit der grundlegenden Frage, ob nichtthermische Intensitäten extrem niedrigfrequenter (< 300 Hz) Magnetwechselfelder in der Lage sind die Kalziumregulation in Zellen des Immunsystems deutlich zu beeinflussen. Einige wichtige Ergebnisse dieser Untersuchungen werden nachstehend zusammengefaßt.

4. Die nichtthermische Wirkung niedrigfrequenter Magnetwechselfelder auf Kalziumhaushalt in Lymphozyten

In den hier kurz beschriebenen Untersuchungen wurden Lymphozyten, die frisch aus dem Thymus der Ratte präpariert worden waren, verwendet (für eine Beschreibung der verwendeten Methoden siehe Walczek und Liburdy, 1990). Es wurden Versuchserien unter Verwendung verschiedenster Feldparameter durchgeführt und einige ausgewählte Ergebnisse sollen hier genannt werden. Zum Beispiel fanden wir, daß sinusförmige 60-Hz Magnetwechselfelder (B = 22 mT; E = 1 mV/cm) den Membrantransport von 44Ca in mitogenbehandelten Rattenlymphozyten innerhalb von 60 min um ca. 170% (p < 0,01) im Vergleich zu isothermischen Kontrollzellen erhöhen können (Walczek und Liburdy, 1990). Bei Verwendung von 3-Hz monophasischen gepulsten Magnetfeldern (B = 6,5 mT; dB/dt = 6,5 T/s; E = 0,16 mV/cm) hingegen, war die Inkorporation von Kalzium in mitogenaktivierte Lymphozyten um 45% (p < 0,025) erniedrigt. Jedoch bei Verwendung von nur schwach oder gar nicht mitogenaktivierbaren Lymphozytenpräparationen fanden wir, daß unter gleichen Expositionssituationen ein Anstieg der Kalziumtransportaktivität zu messen war (ca. 40%: p < 0,025). Zusätzlich wurden Experimente zur Erstellung einer Dosis-Wirkungskurve im Bereich von 0 bis 28 mT durchgeführt, die ergaben, daß mit steigender Feldintensität auch das Ausmaß der 3-Hz Magnetfeldwirkung zunahm (Wallaczek und Budingor, 1991). Für ruhende Lymphozyten war keine Feldwirkung weder des 3-Hz noch des 60-Hz Signales zu beobachten.
Es wurden auch Experimente mit Feldern durchgeführt, die bei der klinischen Kernspintomographie zur Anwendung kommen (statisches Magnetfeld: $B = 2,35$ T; Gradientenmagnetfeld: $B = 1$ mT; $dB/dt = 1$ T/s; Radiofrequenzfeld: $f = 100$ MHz; $B = 64$ µT) und es ließen sich ebenfalls Wirkungen auf den Kalziumhaushalt in Lymphozyten nachweisen: die mitogeninduzierte Kalziumtransportaktivität nahm innerhalb von 60 min um ca. 50% ($p < 0,02$) zu (Ross et al., 1990); ruhende Lymphozyten reagierten nicht auf den Feldeinfluss.

Es soll an dieser Stelle erwähnt sein, daß bei all den genannten Experimenten der gemessene Temperaturunterschied zwischen der feldexponierten Probe und der entsprechenden Kontrollprobe in jedem Fall kleiner als ± 0,15 von 37,0 °C war. Der errechnete Temperaturanstieg aufgrund der Wechselwirkung des Magnetwechselfeldes mit der Zellsuspension über einen Zeitraum von 60 min und in Abwesenheit jeder temperaturkontrollierenden Maßnahmen beträgt bei der höchsten hier verwendeten Feldintensität weniger als 0,0001 °C.

5. Diskussion und Schlüssefolgerungen

Das wichtigste Ergebnis unserer bisherigen Untersuchungen war der Nachweis, daß die kurzfristige (< 60 min) nichtthermische Applikation von extrem niedrigfrequenten elektromagnetischen Feldern die Kalziumregulation in Zellen des Immunsystems (Lymphozyten) unter ausgewählten experimentellen Bedingungen deutlich beeinflussen kann. Desweiteren beobachteten wir, daß unter den getesteten Bedingungen die Aktivierung von kalziumabhängigen Signaltransduktionsvorgängen notwendig war, um signifikante Feldwirkungen beobachten zu können; Kalziumtransport in ruhenden nichtaktivierten Zellen war von keiner der getesteten Magnetwechselfelder beeinflußbar.

Aus unseren Arbeiten geht ebenfalls hervor, daß die beobachteten Feldwirkungen auf Kalziumtransport in Lymphozyten sowohl von den applizierten Feldparametern (Frequenz, Amplitude etc.) als auch von biologischen Parametern (hier: Zellstatus) unmittelbar abhängig sind. Zum Beispiel zeigten unsere Experimente, daß eine bestimmte Feldkonfiguration beim gleichem biologischem System, in Abhängigkeit vom biologischen Status des Systems, drei scheinbar widersprüchliche Wirkungen auslösen konnte, nämlich (1) keine messbare Wirkung (in nichtaktivierten Zellen), (2) eine Stimulationswirkung (in nicht oder nur schwachaktivierbaren Zellen) und (3) eine Inhibitionsreaktion (in normalaktivierbaren Zellen). Dieser Zusammenhang zwischen der Beobachtung von Feldeffekten und dem biologischen Zustand des untersuchten Systems könnte als eine mögliche Erklärung für die z.T. widersprüchlichen Resultate, die in der Literatur bei Verwendung anderer Modellsysteme zu finden sind, dienen, denn bisher wurde nur in den seltensten Fällen der biologische Zustand des feldexponierten Systems in bio-
elektromagnetischen Studien charakterisiert oder die Abhängigkeit der
gefundenen Feldwirkung vom biologischen Zustand untersucht.

Unsere Arbeiten wiesen auch nach, daß bei Beachtung von sowohl physi-
kalischen als auch ausgewählten biologischen Parametern nichtthermische
Magnetfeldwirkungen auf Kalziumhaushalt in Lymphozyten in-vitro von
unabhängigen Forschergruppen reproduziert werden können: Zum Beispiel
boten die Studien von Conti et al. (1985) mit 3-Hz gepulsten Magnetfeldern
(B = 6,0 mT) erste Hinweise dafür, daß Kalziumtransport in mitogenbehan-
delten Humanlymphozyten um durchschnittlich 70% (p < 0,01) innerhalb von
60 min in Gegenwart der 3-Hz Felder reduziert werden konnte. Unsere
eigenen Resultate, die nachwiesen, daß 3-Hz gepulste Magnetfelder (B = 6,5
mT) Kalziumtransport in mitogenbehandelten Rattenlymphozyten innerhalb von
30 min um ca. 45% (p < 0,025) reduzieren können, stimmen mit den unabhän-
gigen Ergebnissen von Conti et al. (1985) sehr gut überein.

Aufgrund der obigen Resultate muß bereits beim gegenwärtigen Wissens-
stand die Möglichkeit erneut in Erwägung gezogen werden, daß - unter
bestimmten Bedingungen - nichtthermische Intensitäten elektromagnetischer
Felder wichtige Immunsystemfunktionen (z.B. auch im Menschen) beeinflussen
könten. Über die zugrundeliegenden Wechselwirkungsmechanismen zwischen
dem Immunsystem und elektromagnetischen Feldern jedoch kann zu dem gege-
benen Zeitpunkt nur spekuliert werden. Dennoch deuten unsere eigenen Er-
genisse und die anderer Forschergruppen bereits darauf hin, daß die
Modulation von zellulären Kalziumsignalen eine Schlüsselrolle in der Aus-
lösung von Feldeffekten in Immunsystemen darstellen könnte. Es besteht
daher die berechtigte Hoffnung, daß neue Experimente unter Einbeziehung
der Erkenntnisse aus den bisherigen experimentellen und theoretischen
Untersuchungen von Wissenschaftlern verschiedener Disziplinen bereits in
absehbarer Zukunft einen wesentlichen Beitrag zum Verständnis der zugrun-
deliegenden Wechselwirkungsmechanismen zwischen elektromagnetischen
Feldern und Zellen des Immunsystems leisten werden.

Danksagung: Die Arbeiten des Autors wurden von der Deutschen Forschungs-
gemeinschaft (Wa 680/1-1), dem US-Energieministerium (DE-AC03-76SF00098)
und dem Fetzner Institut (No. 561) unterstützt.

6. Schrifttum

S. 451-529

Künstliche schwache Magnetfelder reduzieren die Melatoninssynthese im Pinealorgan: Zelluläre Mechanismen und Implikationen

von

Alexander Lerchl

Institut für Reproduktionsmedizin
der Westfälischen Wilhelms-Universität
Steinfurter Str. 107, 4400 Münster

Zusammenfassung

Summary

During the past, the possible connections between non-ionizing electromagnetic fields and health risks (e.g., neoplasias) are seriously considered. This fact is a consequence from epidemiological studies which support this assumption. Yet, little is currently known about the underlying mechanisms. However, increasing evidence indicate a major role of ions (e.g., Ca$^{2+}$) in this context. The pineal organ is an endocrine gland in which the synthesis of the hormone melatonin is modulated by Ca$^{2+}$. When isolated pineals are exposed to weak alternating magnetic fields, a significant suppression of melatonin production can be observed. These results support, on one hand, the so called "ion-cyclotron-resonance" hypothesis. On the other hand, these results may be significant in the context of the assumed oncostatic properties of melatonin.
1. Einleitung

1.1. Epidemiologische Studien

Eine vielfach nicht oder nur unzureichend beachtete Besonderheit dieser epidemiologischen Studien ist die Art des Vergleichs. Es werden nicht, wie in einem experimentellen Ansatz, eine Kontroll- und eine exponierte Gruppe verglichen, sondern zwei (oder mehr) Gruppen, die lediglich unterschiedlich stark exponiert sind. Insofern sind die häufig beobachteten Unterschiede hinsichtlich des relativen Erkrankungs-Risikos umso erstaunlicher und schwerwiegender.

Ein Schwachpunkt von derartigen epidemiologischen Studien ist zweifelsfrei die unzureichende genaue Abschätzung der tatsächlichen Exposition zu Magnetfeldern. Obwohl inzwischen Langzeit-Dosimetern auf dem Markt sind, die über Wochen die tatsächlichen Feldstärken ermitteln, werden sie erst seit kurzem in Feldversuchen eingesetzt. Jedoch ist der in den USA benutzte "wiring code" ein relativ zuverlässiges, halb-quantitatives Maß für die Exposition zu 60Hz-Magnetfeldern.

2. Biologische Mechanismen

Ein zentraler Punkt bei der Bewertung möglicher Gefährdungen durch elektromagnetische Felder ist die Aufklärung der Wirkungsmechanismen. Solange diese Mechanismen nicht verstanden sind, sind gezielte Experimente (z.B. Dosis-Wirkungs-Studien) schwer durchzuführen [3,4].
2.1. Ionen

3. Das Pinealorgan

3.1. Wirkungen von Magnetfeldern auf die Melatonin-Synthese im Pinealorgan

Es ist seit etwa 10 Jahren bekannt, daß die Synthese von Melatonin durch schwache Magnetfelder (z.B. erzeugt durch Holzkohle-Platten) unterdrückt werden kann. Diese Experimente wurden vielfach wiederholt und im Ergebnis bestätigt [4,7,8]. Zunächst wurde angangenommen, daß dieselben Änderungen der Melatonin-Synthese im Zusammenhang mit der äußeren Orientierung stehen könnten, da selbst solche

Abb.1: Der Syntheseweg von Melatonin in einer vereinfachten und schematisierten Darstellung. Noradrenalin (NA), aus postganglionären sympathischen Synapsen (S) ausgeschüttet, bindet an α-Rezeptoren (α-R) und β-Rezeptoren (β-R). Beide Rezeptortypen wirken letztlich auf die Adenylat-Cyclase (AC), die die Umwandlung von ATP zu cAMP katalysiert. Allerdings wirken α-Rezeptoren über eine Öffnung von Ca²⁺-Poren; das einströmende Ca²⁺ wird fördernd auf die Protein-Kinase C (PKC), die ihrerseits die Adenylat-Cyclase stimuliert. Über cAMP wird die Synthese von NAT initiiert, das Schlüsselenzym der Melatonin-Synthese. Obwohl Ca²⁺ prinzipiell stimulierend auf die Synthese von NAT (und damit Melatonin) wirkt, haben zu hohe intrazelluläre Ca²⁺-Konzentrationen den gegenteiligen Effekt: Die NAT- Aktivität wird unterdrückt.

5. Schlussfolgerungen

5. Schriften

DIE WIRKUNG NIEDERFREQUENTER ELKTROMAGNETISCHER WELLEN AUF DIE GENTRANSKRIPTION

von

J. Bumann, R. Goodman und A. Henderson
Columbia University, Department of Pathology, 630 W. 168th Street, New York, N.Y. 10032, USA,
Hunter College, City University of New York, N.Y. 10021, USA

Zusammenfassung

Abstrakt
The effect of ELF (extremely-low-frequency) electromagnetic (EM) fields on gene transcription was investigated using human HL-60 cells and the salivary gland cells from larvae of Drosophila melanogaster and Sciar a coprophila. Exposure of larvae from both species to pulsed asymmetric and sinusoidal magnetic fields for 15-60 minutes resulted in an increase of incorporation of [3H]-uridine into RNA size classes of approximately 20-25S, 6-10S and 4S using sucrose density gradients. Moreover, RNA transcripts were induced, as was shown by means of transcription autoradiography. Exposure of HL-60 cells in the same fields increased the levels of histone H2B and c-myc mRNA and of other transcripts up to 200% within 20 minutes. Sinusoidal fields that induced increase in transcripts is dependent on frequency and is not proportional to exposure time and magnetic flux density.

1. Einführung

2. Ergebnisse

3. Diagnostik
Wirkungen auf die Transkription bei den Speicheldrüsenzellen und Transkriptionswirkungen bei den HL-60 Zellen erfolgten unter gleichen magnetischen Feldbedingungen. Dies spricht dafür, dass die Transkription bei HL-60 Zellen vorn den durch eine Aktivierung der Transkription als durch eine Reduktion der Abbauerate zustande kommen. Für diese Möglichkeit spricht auch die Tatsache bei HL-60 Zellen und einer lymphoiden Zelle unter ähnlichen Feldbedingungen Wirkungen auf die Genumschreibungsaktivität und auf die Transkription speziesbezoge wiesen auf. Bei mittleren physikalischen Bedingungen unter unterschiedliche Wirkungen, die durch das magnetische Feld und solche, die durch das in der Zelle aufgenomene induzierte elektrische Feld verursacht werden. Besonders von Oden und Mitarbeitern spricht für eine Rolle des elektrischen Feldes [8]. Sie fanden bei HL-60 Zellen eine unterschiedliche Aktivität der Transkription unter gleichen magnetischen aber unterschiedlichen induzierten elektrischen Feldbedingungen. Ebenfalls für eine Rolle des elektrischen Feldes spricht, dass Zunahmen von c-fos- und Histon H2B Transkripten bei HL-60 Zellen auch durch 60 Hz elektrische Felder induziert werden könnten [9].

4. Schlußfolgerungen
Bioelectromagnetics (im Druck).
Biologische Systeme und nichtlineare Dynamik:
periodische Prozesse unter dem Einfluss schwacher externer Felder.

F. Kaiser, C. Elithwald
Institut für Angewandte Physik - Nichtlineare Dynamik,
Technische Hochschule, Hochschulstr. 4A, 6100 Darmstadt

Zusammenfassung

Im vorliegenden Beitrag wird die Bedeutung interner aktiver Oscillationen durch externe periodische Felder untersucht. Schwerpunkt ist hier die Wechselwirkung mit Frequenzen, die im sub- und superharmonischen Bereich der internen Oscillation liegen, d.h. weit außerhalb der Hauptresonanz. Die Überlagerung des Wechselrades mit einem statischen Feld führt zu dramatischen Veränderungen im Response des Systems. Das Bifurkationsverhalten kann sich vollständig ändern.

Abstract

Rhythmic phenomena are of fundamental importance for the creation, stabilization and maintenance of a certain biological order and function. The corresponding frequencies extend from the sub-Hz to the GHz region. The restriction to interaction processes of biological systems with electromagnetic fields having weak intensity and non-losing frequencies necessitate the methods of nonlinear dynamics and mainly the concept of coherent oscillations and oscillations.

In the present contribution the influence of internal active oscillations by external periodic fields is studied. Main emphasis lies on the interaction with frequencies in the sub- and superharmonic region of the internal oscillation. The superposition of a static field to the alternating one causes dramatic changes in the system's response: the bifurcation behaviour may change completely.

For two models numerous results are shown. Model 1 is a model for coherent oscillations. It offers a clear demonstration of the principal facts of externally driven self-sustained oscillators. The second model is much more concrete. It describes Ca^{2+}-oscillations, which have been found in many (mainly nonexcitable types of) cells. Both a modification and an extension of the model allows to consider specific and sensitive processes of interactions, which are already known from experiment.
1 Einleitung

Allen periodischen Vorgängen gemeinsam ist, daß durch die spezielle Ordnungs- und Funktionsszustände erreicht und aufrechterhalten werden. Notwendig hierzu ist, daß einige wenige speziale Freiheitsgrade weit weg vom thermischen Gleichgewicht durch Energiezufuβ stabilisiert werden (Fließgleichgewicht) und keine schnelle Dissipation der Energie auf andere Freiheitsgrade möglich ist. Solche Systeme zeichnen sich grundsätzlich durch eine interne nichtlineare Dynamik aus. Bei rhythmischen Phänomenen interessiert insbesondere die Dynamik selbstregulierender Oszillationen. Diese repräsentieren stabile periodische Strukturen, die durch intern oder externe Einflüsse (z.B. periodische Felder) vielfältige Änderungen (Bifurkationen) in ihrem Verhalten zeigen können [13].

2 Nichtlineare Resonanzen

Extern getriebene selbstregulierende Oszillationen antworten je nach Anregungsstärke und Treiberfrequenz periodisch, quasiperiodisch oder irregulär (chaotisch). Neben den auch von linearen Oszillationen bekannten Hauptresonanzen gibt es nun eine Fälle sub- und superharmonischer Resonanzen mit dem rationalen Frequenzverhältnis p/q (p interne Oszillationen während q externen, p/q = 1/1 ist die Hauptresonanz). Insbesondere subharmonische Resonanzen (p/q < 1) sind ein Hinweis auf die zugrunde liegende nichtlineare Dynamik. Bild 1a zeigt das Resonanzdiagramm eines biophysikalischen Oszillationsmodells, des eine selbstregulierende kohärente Oszillation beschreibt, hier aber nicht weiter diskutiert werden soll [10,11,12,14].

![Resonanzdiagramm](image_url)

Bild 1: a) Resonanzdiagramm: Lösungsverhalten des extern getriebenen Oszillators, \(F(t) = F_0 + F_1 \cos \omega t \) für \(F_0 = 0 \) (linke), b) Hauptresonanz (1/1 in Bild a) für 6 verschiedene \(F_2 \)-Werte (3 → 5) : \(F_2 = -40 → +200 \) (rechts).

3 Die Rolle des Kalziums für die Zelle

Insbesondere durch eine chemische Aktivierung der Zelle kann die Kalziumkonzentration im Zytoplasma erhöht werden. Dabei wird das Signal über geeignete Rezeptoren an der Membranoberfläche in das Zellinnere weitergeleitet. Dort wird eine Reaktionskaskade ausgelöst, an deren Ende die Erhöhung der intrazellularen Kalziumkonzentration erfolgt. Dies kann durch Freisetzung von Kalzium aus intrazellulären Speichern und/oder durch Einströmen über die Zellmembran erreicht werden [4,5]. Speziell bei T-Lymphozyten [7,8,16], jedoch auch bei anderen Zelltypen, hat sich gezeigt, daß die Freisetzung von Kalzium aus internen Speichern nur eine transiente Erhöhung von [Ca²⁺], hervorruft. Dagegen ist für eine dauerhafte Anhebung von [Ca²⁺], eine Erhöhung des Kalziumflusses über die Zellmembran notwendig [7,8,16]. Diese Untersuchungen beweisen damit auch endogen die Existenz von ionenkaalen in elektrisch nichtregulierbaren Zellen [2b].

In vielen Zelltypen beobachtet man ferner, daß die chemische Aktivierung ein Oszillieren der intrazellularen Kalziumkonzentration hervorruft, wobei ein Grenzwert bzgl. der Stärke des Stimulus, der zu Oszillationen führt, existiert [4,5]. Die Frequenz dieses zytoplasmatischen Kalziumoszillators ist oft eine Funktion der Stärke der Anregung. Deshalb und vermutet, daß sie die Wirkung des Kalziums bei zellulären Prozessen bestimmt, [frequency encoding] [4,9]. Eine Veränderung bzw. Manipulation des Oszillationsmusters könnte somit eine starke Beeinflussungen in der Zelle ablauender Reaktionen bewirken.

(i) der chemische Stimulus führt zu einem konstanten Ablauf von Kalzium aus einem Stimulus-sensitiven intrazellularen Speicher.

(ii) Die Anregung des zytosomalen Kalziumoszillators erfolgt durch kalsiuminduzierte Freisetzung von Kalzium aus einem zentralen intrazellularen Speicher (calium-induced calcium release, CICR, [4,6]).

Bei der kalsiuminduzierten Freisetzung von Kalzium existiert also ein positiver Rückkopplungsmechanismus (positive feedback), der eine Erhöhung der intrazellulären Kalziumkonzentration bewirkt. Dieser Prozeß scheint bei vielen Zellen von fundamentaler Bedeutung zu sein, wie auch experimentelle Untersuchungen zeigen [4,5,17].
4 Grundlagen des erweiterten Kalziummodells

Es gibt zur Zeit wenig quantitative theoretische Ansätze, die sich mit der Interpretation der Experimente für
Zellkulturen, die mit nichtionisierten ELF-elektromagnetischen Feldern behaucht wurden, auseinanderzusetzen.
Wir wollen an dieser Stelle ein Modell vorstellen, das sowohl die chemische Aktivierung der Zelle, als auch den
möglichen Einfluß eines äußeren Feldes berücksichtigt. Dabei sollen folgende Fragestellungen untersucht werden:
(1) kann durch ein elektromagnetisches Feld die intrazelluläre Kalziumkonzentration verändert werden, (ii) wie äußert sich der Einfluß des Feldes auf die Zelle, (iii) welche Zusammenhänge zwischen dem chemischen
Aktivierung der Zelle und der Präsenz des Feldes. Aufgrund der spezifischen Eigenschaften der beobachteten
Effekte, z.B. hinsichtlich der Frequenzabhängigkeit der Phänomene [1,2], ist die Berücksichtigung nichtlinearer
Wechselwirkungsprozesse als unabdingbar anzusehen [11,12,13,14].

Das Modell ist in Bild 2a schematisch dargestellt. Es besteht aus zwei miteinander wechselwirkenden nichtlinearen
Oszillatoren. Die chemische Aktivierung der Zelle erfolgt über geeignete Rezeptoren an der Membranoberfläche
und führt zur Anregung eines zytoplasmatischen Kalziumresonators. Dieser Prozeß wird mit Hilfe des GDB-Modells
[9] beschrieben. Die Zellmembran gilt als wahrscheinlicher Wirkungsort für die Wechselwirkung mit ELF-
elektromagnetischen Feldern [1,2,19,20]. Es ist möglich, daß durch das Feld der Kalziumtransport in die Zelle
über die Membran verändert wird. Wir stellen deshalb folgende Hypothese auf der Ebene des elektromagnetischen
Feldes und der Anregung eines Membranresonators, der den Transport von Kalzium über die Membran
charakterisiert.

Die Modellgleichungen lauten wie folgt:

\[
\frac{dX}{dt} = W + \frac{X}{K_E + X} \omega \cos(\omega t) \tag{1}
\]

\[
\frac{dW}{dt} = -kW - \nu_1(X) + \xi \tag{2}
\]

\[
\frac{dY}{dt} = \nu_2(Z) - \nu_3(Y, Z) - \xi \tag{3}
\]

\[
\frac{dZ}{dt} = -\nu_4(Z) + \nu_6(Y, Z) + k'Y + \nu_0 + \nu_5 - (k + k')Z + \nu_5(X) \tag{4}
\]

\[
\nu_1(X) = 4Y \frac{X^n}{K^n_E + Y^n} \tag{5}
\]

\[
\nu_3(Y, Z) = 4Y \frac{K^n_E + Y^n}{K^n_E + Z^n} \tag{6}
\]

\[
\nu_4(Z) = 4Z \frac{Y^n}{K^n + Z^n} \tag{7}
\]

Die Gleichungen (1),(2) und (7) sind die von uns vorgeschlagenen Erweiterungen des GDB-Modells. Dabei
beschreibt \(X \) die Kalziumkonzentration unmittelbar an der Membranoberfläche, \(W \) die zeitliche Änderung von \(X \),
\(Y \) die Konzentration von Kalzium in einem intrazellulären Speicher und \(Z \) die intrazelluläre Kalziumkonzentration.
Die Anteile \(\nu_3(Y, Z) \) bzw. \(\nu_4(Y, Z) \) stellen den aktuellen Kalziumfluß in bzw. aus dem Speicher dar. Der Beitrag \(k'Y \)
berücksichtigt einen zusätzlichen passiven Ausfluß aus dem Speicher. Die Terme \(\nu_4(X) \) und \(kZ \) charakterisieren
die Wechselwirkung der beiden Oszillatoren miteinander. Der Anteil \(\nu_5(X) \) beschreibt den Einfluß von Kalzium
über die Zellmembran in das Zytoplasma, \(kZ \) den umgekehrten Transfer. Dieser Beitrag wird der Einfachheit
halber als linear in \(Z \) festgelegt. Das Bild 2b zeigt eine Zusammenfassung dieser Prozesse.

Der Term \(\nu_0 \) in Gl. (6) charakterisiert die Aktivierung des zytoplasmatischen Oszillators. Im vorliegenden Modell
beinhaltet dieser Beitrag sowohl den Ausfluß von Kalzium aus einem Stimulus-spezifischen intrazellulären Speicher,
as auch den zusätzlichen Einfluß von Kalzium über die Zellmembran (siehe vorhergehendes Kapitel). Die chemische
Anregung der Zelle führt demnach zu einem konstanten Einfluß von Kalzium in das Zytoplasma. Der
Parameter \(\beta \) (0 ≤ \(\beta \) ≤ 1) charakterisiert dabei die Anregungsdauer \(\beta \) Erregbarkeit der Zelle. Die Kopplung
des Feldes an den Membranresonator erfolgt über eine parametrische Anregung an die Variable \(X \). Diese Form
Bild 2a: Das erweiterte Kalziummodell. a) schematisch (links), b) Darstellung der einzelnen Prozesse. (i) - (vi) interzellularer Kalziumspitzer ([i]: Stimulus - sensitiv - siehe Text) (rechts)

des Treibers hat sich als überwiegend künstlich der zeitlichen Entwicklung des Gesamtsystems zuordnen. Gleichzeitig erlaubt eine parametrische Kopplung im weitesten Sinne die Interpretation des Membranoszillators als eine zeitabhängige nichtlineare Kapazität.

Eine Stabilitätsanalyse der stationären Lösungen (P = 0 und alle Zeitdiskrete = 0) des Gleichungssystems (1)-(7) zeigt, daß im Bereich 0.29 ≤ θ ≤ 0.77 ein stabiler Gleichgewichtszustand existiert, d. h., das System selbstregiert oszilliert. Eine umfangreiche Untersuchung der Dynamik des Systems (P = 0) führt auf das für selbstregierte Oszillatoren typische Resonanzverhalten [13,15]. Je nach Kombination von Amplitude E und Frequenz ω des Treibers kann man periodische oder quasiperiodische Zustände finden. In Bild 3 sind einige periodische Oszillationen angedeutet, bei denen ein rationales Verhältnis zwischen internem und externem Frequenz vorliegt (mode-locking).

Bild 3: Oszillationsdiagramme der Variablen X, Z, v. l. o. n. u. $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, 3, 4, 5$-Resonanzen.
In Bild 4b ist das Ergebnis einer Untersuchung dargestellt, bei der die Feldparameter vorgegeben wurden \(\left(F, \omega = \text{const.} \right) \) und die Anregungskräfte, die Erregbarkeit \(\beta \) der Zelle variiert wurde. Man erkennt, dass die Feldinduzierte Zunahme \(\Delta \) der interzellularen Kalziumkonzentration eine monoton fallende Funktion von \(\beta \) ist. Insbesondere für Werte von \(\beta > 0.9 \), in denen das System selbstverstärkt ist, zeigt sich ein nahezu linearer Zusammenhang in der halblogarithmischen Darstellung. Diese Tendenz wurde auch bei den Experimenten von J. Waller und R.P. Liburdy beobachtet, wo sich zeigte, dass Zellen, die nur eine reduzierte Reaktion auf den chemischen Stimulus zeigen, am empfindlichsten auf ein elektromagnetisches Feld reagieren [19].

Bild 4: a) Mittelwert \(\Delta \) der zytosolischen Kalziumkonzentration als Funktion der Trägerfrequenz \(\omega \) \((F, \beta = \text{const}) \) (links), b) Feldinduzierte Zunahme \(\Delta \) der interzellularen Kalziumkonzentration als Funktion der Erregbarkeit \(\beta \) der Zelle \((F, \omega = \text{const}) \) (rechts)

5 Schrifttum

Elektromagnetische Beeinflussung chemischer Abläufe
durch Wechselwirkung mit dem Elektronenspin

von

F. Keilmann
Max-Planck-Institut für Festkörperforschung, 7000 Stuttgart 80

Zusammenfassung
In vielen chemischen Reaktionen kommen Moleküle vor, die ein oder mehrere ungepaarte Elektronen enthalten und deswegen als Radikale, Tripletmoleküle usw. bezeichnet werden. Ihnen ist gemeinsam, daß sie einen resultierenden Elektronenspin ungünstig null besitzen, dessen Orientierung durch ein elektromagnetisches Feld beeinflußt werden kann, genauer gesagt, durch die magnetische Komponente eines stationären oder auch Wechselfeldes.

Abstract
Many chemical reactions involve molecules which contain one or more unpaired electrons. These so-called radicals and triplet molecules have in common a non-zero electron spin. The orientation of this spin can be influenced by an electromagnetic field, or more precisely, by a stationary or alternating magnetic field component.

This talk reviews the effects on chemical reaction rates of unexpectedly weak magnetic fields at low frequencies ("magneto-chemistry", "radical-pair mechanism") and also, the resonant effects of weak microwaves ("triplet mechanism"). Both types of microscopic interactions are possible candidates to explain the primary step of a nonthermal electromagnetic sensitivity in biology.

1. Einleitung

2. Quantenwirkungen

Insgesamt also sind direkte Quantenwirkungen nicht vorhanden, wenn wir die Betrachtung auf die "niedefrequenten" Spektralbereiche der Mikrowellen, Hoch- und Niedervolkenen beschränken. Auf molekularen Ebene bleiben nur thermische Wirkungsmöglichkeiten: die Strahlung erzeugt Bewegung von Ladungen oder Dipolen, erledigt dadurch Ohrutsche oder dielektrische Verluste, und führt zu einer Erwärmung.

3. Elektronenspinanregung

Für die chemischen Abhängigkeiten kann der elektronische Spinzustand eines oder mehrerer der beteiligten Moleküle bedeutend sein. Diese Möglichkeit ist in der Chemie noch wenig bekannt. Im Zusammenhang unserer Fragestellung der elektromagnetischen Wirkungen in der Biologie bietet die Spinselektivität chemischer Reaktionen einen neuen und interessanten Ansatz.

Zusätzlich muß vorausgesetzt werden, daß von vorhersehbar eine gewisse Spinspolarisation vorliegt, daß also die Spins aller Moleküle nicht statistisch isotrop verteilt sind; hätte man nämlich Isotopen, dann stünde demfeldinduzierten Orientierungsvorgang eine Untergruppe der gegenläufige Vorgang einer anderen Unterguppe gegenüber, und man hätte im Ensemblemittel keinen Effekt. Gerade diese Voraussetzung ist bei beiden betrachteten Reaktionsmustern gegeben: die relative Spinoorientierung zweier Reaktionspartner ist dann weitgehend festgelegt, wenn und kurz nach dem als Produkt einer vorangegangenen Dissoziation entstanden sind, und ebenso ist die Orientierung des Spins in einem Molekül weitgehend festgelegt, wenn und kurz nach dem dieses Molekül entstan-
den ist. Diese anfängliche Spinpolariisation wird so lange erhalten, bis die Spins durch Moleküllösungen statistisch umorientiert sind, und dies dauert um Größenordnungen länger als die oben angesprochene Thermalisierung von Schwingungsenegie.

Insgesamt gesehen sind also im Widerspruch zum vorigen Abschnitt doch Quantenwirkungen im niederfrequenten Spektrum durchaus vorhanden. Diese zusätzliche Möglichkeit ist dadurch entstanden, daß wir Molekülsysteme aufgezeigt haben, die sich in nicht-thermischer Weise präparieren und diesen Zustand eine ausreichend lange Zeit beibehalten.

4. Radikalpaar-Mechanismus

Ein Molekül mit einem ungepaarten Elektron wird Radikal genannt und hat einen Gesamtelektronenspin $s = 1/2$. Ausgangspunkt für den Radikalpaar-Mechanismus ist das Entstehen eines Paars von gleichen oder ungleichen Radikalen aus einem Vorgängermolekül. Dieser Prozeß kann ein Teilprozeß einer chemischen Reaktionskette sein, wie sie häufig in der Biochemie vorkommt. Wesentlich ist, daß die beiden Radikale spinverknüpft entstehen, d.h., ihre Spins in definierter Weise zueinander orientiert sind. Wenn das Vorgängermolekül ein elektronisch angeregtes Triplett molekül ($e = 1$) ist, sind die Spins der Radikale zunächst parallel.

Beide wird nun als nächster Reaktionsabschnitt die Rekombination der beiden Radikale im elektronischen Grundzustand. Dies ist zunächst nicht möglich, weil der Singulettcharakter ($e = 0$) des Grundzustands eine relative Umlagerung der Spins verlangt. Hier kann während der Zeit bis zum ersten Zusammenkollis des Paars eine solche Umlagerung stattfinden, etwa durch Einflüsse der Umgebung oder durch ein äußeres Magnetfeld, kann die Rekombination erfolgen. Dazu ist die Voraussetzung gegeben, daß die Reaktion in ihrer Geschwindigkeit oder sogar in ihrer Richtung von einem Magnetfeld abhängig ist.

Die erforderliche Stärke sowie Einwirkungsdauer des Magnetfeldes hängt mit der Zeit zusammen, nach der das Paar endgültig nicht mehr zusammenhält. Hier gibt es bei den bekannten Reaktionen eine große Variation [1], etwa 10 - 1000 Gauss für die Feldstärke und 1 ns - 1 ms für die Wiederhauke. Damit kann die Radikalpaar-Mechanismus im sehr breiten Frequenzgebiet von Hochfrequenzwellen bis zum (magnetischen) Gleichfeld auftreten. Man erwartet nur schwache Frequenzabhängigkeit, keinesfalls scharfe Resonanzen. Einige Resonanzen aus der Biochemie sind bereits bekannt [1].

5. Triplet-Mechanismus

Ein Strahlungseffekt ist dann möglich, wenn die Moleküle spinpolariert vorliegen. Dies ist im
allgemeinen unmittelbar nach Entstehen des Tripelmetalls aus einem Vorgängermoleküll der Fall und bleibt für die Zeitdauer T, der sog. Spin-Gitter-Relaxation erhalten. Während dieser Zeit kann also eine resonante Mikrowelle eine Umorientierung der Spinpolarisation bewirken.

Die erforderliche Intensität der Mikrowelle läßt sich in der Größenordnung leicht abschätzen, wenn man den Populationstransfer von einem zum anderen Spinzustand betrachtet [2]. Es ergibt sich ein Sättigungsverhalten mit einer Schwelleintensität, die der Relaxationszeit umgekehrt proportional ist, und 5 mW/cm² für den Fall einer Resonanzbreite von 8 MHz und $T = 1$ ms beträgt. Erst sehr wenige Beispiele solcher Reaktionen sind in der Literatur bekannt [1,2].

Die Resonanzfrequenzen von vielen Tripelmetallkomplexen sind dagegen bekannt und katalogisiert; allerdings gilt dies nur für den in vielen ESR-Apparaturen zugänglichen Frequenzbereich unterhalb ca. 10 GHz. Für höhere Frequenzen gibt es noch keine systematische Spektroskopie dieser "Nullfeldaufspaltungen". Aus wenigen Beobachtungen ist aber bekannt, daß gerade Moleküle mit einem Übergangsmetallkomplex, wie ihn etwa die Porphyringruppe im Hämoglobin darstellt, eine besonders hohe Resonanzfrequenz bis zu mehreren 100 GHz haben. Wegen der enzymatischen Rolle dieser Moleküle erscheint die Entwicklung einer derartigen Spektroskopie gerade für den Zusammenhang unseres Themas besonders reizvoll.

6. Ausblick
Die Frage, welche elektromagnetischen Effekte in biologischen Systemen durch die hier beschriebenen magnetoochemischen Mechanismen primär verursacht werden, ist noch völlig offen. Es kann aber erwartet werden, daß es eine Vielzahl solcher Effekte gibt, eben weil schon viele Beispiele in der Chemie einfacher molekularer Systeme aufgefundenes worden sind. Es ergaben sich folgende Geschichtspunkte:
- Magnetoochemische Wirkungen können schon bei schwachen Magnetfeldern von wenigen Gauß, stationär wie auch niederfrequent, in vielen biochemischen Abläufen zu finden sein;
- Mikrowellenwirkungen sind bei Vorhandensein geeigneter Tripelmetalle denkbar, sie äußern sich in einem Resonanzeffekt mit Schwelleverhaltencharakter;
- beide Mechanismen werden durch statistische Magnetfelder aktiviert, deshalb sind Messungen im statistischen Magnetfeld für ein "screening"-Experiment vorzuziehen;
- zur Bestimmung der hochfrequenten Nullfeldaufspaltung interessanter Biomoleküle würde sich die Entwicklung geeigneter Spektroskopie lohnen.

7. Schrifttum
Frequenz- und intensitätsabhängiger Einfluß von Mikrowellen auf das Wachstum von Einzelzellen.

von

W. Grundler
GSF-Forschungszentrum für Umwelt und Gesundheit, GmbH,
Institut für Biophysikalische Strahlenforschung,
D-8042 Neuhardenberg, FR Germany

Zusammenfassung

An dem Wachstumsverhalten von einzelnen Hefezellen, die in einer Präzisionskammer mit ortsfester und über neun Dekaden variierbarer Intensität bestrahlt wurden, ließen sich frequenz- und intensitätsabhängige Einflüsse von Feldern im 42 GHz-Bereich quantifizieren.

Diese Beobachtungen (frequenzabhängige Resonanz, intensitätsabhängige Resonanzenbreite) lassen sich mit Ergebnissen von Modellrechnungen vergleichen, die als Antwort von nichtlinearen Oszillatoren auf externe Feldstörungen hin gewonnen wurden. Legt man als Hypothese einen derartigen nichtlinearen Mechanismus innerhalb der Reaktionskette vom unbekannten primären Absorptionsprozess bis zur beobachteten biologischen Antwort im lebenden System zugrunde, so liefert der Vergleich von Experiment und Modell den Hinweis, daß aktive intern „Oszillationen“ mit dem äußeren elektromagnetischen Feld interferieren. Allerdings fehlt bisher ein Hinweis auf den primären Energieabsorptionsprozess selbst.

Abstract

Only recently, the discussion on biological effects induced by electromagnetic (ELM) radiation has focussed on the question, if there is a considerable induction probability of molecular and cellular responses to very low radiation intensities. This interest was caused by epidemiological studies indicating a possibly significant, albeit small, correlation between the exposure to weak ELM-fields and an elevated risk to some kinds of cancer. The US environmental protection agency and others, therefore, have been suggested to promote experimental studies of weak field interactions with biological systems.

It has been shown, that certain physical field parameters influence the biological endpoint specifically. Therefore, the systematic variation of these parameters is a prerequisite to judge the biological effectiveness of such ELM-fields and to correlate the observed effects with theoretical concepts.
In our experiments we have controlled some of the physical parameters by using a new, highly precise, irradiation chamber, which has a fixed, well-defined intensity distribution that extends over 9 decades. Irradiation experiments with single yeast cells analysed by image cytometry have shown frequency and intensity dependent influences on cell growth by fields in the 42 GHz-region.

These observations (frequency dependent resonances and intensity dependent resonance widths) have been compared with results of model calculations of the response of nonlinear oscillators disturbed by external fields. As a hypothesis to adapt this theory to our results, it is suggested, that a nonlinear self-sustained oscillator is involved in the biological response without, of course, any knowledge of the primary energy absorption process itself.

1. Einleitung

Während der letzten Jahre hat die Frage nach der Beeinflussung biologischer Systeme durch elektromagnetische (ELM) Felder und den Ihr zugrundeliegenden Wechselwirkungsmechanismen stark an Aktualität gewonnen. Maßgeblich für diese Bedeutungszunahme waren epidemiologische Befunde und neuere experimentelle Laborergebnisse, die man insbesondere mit Feldern sehr niedriger Frequenz gefunden hat.

Im Hinblick auf diese neuen Erkenntnisse aus dem zum Zeit verstärkt untersuchten ELM-Bereich gewinnen auch die durch Mikrowellen ausgelösten und in höheren und z.T. auch neueren Studien beobachteten Effekte einen höheren Grad an Akzeptanz. Denn auch hochfrequente ELM-Felder zeigen offensichtlich spezifische biologische Wirkungen, die nur in bestimmten Reaktionszeiten zu beobachten sind.

So fanden Cleary et al. [6] in Studien über intensitätsabhängige Einflüsse von 2,45 GHz Feldern auf die DNA- und RNA-Synthese in Glomma Zellen ein Intensitätsfenster zwischen 5 und 50 W/kg absorbierter Energie, innerhalb dessen die Syntheserate bis zu einem Faktor 2,6 erhöht waren.

Über eine nichtlineare Wirkung auf das Immunsystem von Mäusen durch unterschiedliche Modulationsfrequenzen (14-11 Mhz) von gepulsten Mikrowellen (9,4 GHz, 1 μs Pulse) berichteten Veyret et al. [7]. Sie fanden im untersuchten
Modulationsfrequenzbereich bei 21 und 32 MHz (HWF ± 1 MHz) sehr schmale resonanzartige Reaktionsfenster, in denen die Antikörperresponse gegen Serum Albumin signifikant erhöht war.

Eine ähnliche stark von der Frequenzabhängige Wirkung des äußeren Feldes haben wir im Millimeterwellenbereich beobachtet. Wir haben das Wachstum von Hefezellen in Suspension photometrisch und an Einzelzellen mikroskopisch untersucht und herausgefunden, daß die Generationszeiten dieser Zellen durch die Bestrahlung mit Mikrowellen niedriger Intensität (< 10 mW/cm²) beeinflußbar sind. Der Effekt erwies sich als stark frequenzabhängig. Insbesonders zeigte sich um manche Frequenzen eine resonanzartige Abhängigkeit mit einer Resonanzbreite von nur ca. 8 MHz. Diese scharfen, erstmals gemessenen Reaktionsresonanzen konnten durch mehrere Versuchsserien bestätigt werden [8].

Jedoch waren ein Mangel an voller Reproduzierbarkeit der Effekte und Ergebnisse anderer Autoren über die Existenz von Intensitätsfenstern darauf hin, daß offenbar wichtige Feldparameter - insbesonders die Intensität - wesentlich differenziert kontrolliert werden müssen.

2. Methodische Entwicklung: Bestrahlungskammer und Bildverarbeitungssystem

Die quantitative Kontrolle der Intensität bei Bestrahlungsexperimenten mit Wellenlängen im Bereich weniger Millimeter ist schwierig und kann nur mit größerem apparativen Aufwand gelöst werden. Das Ziel eines verbesserten Versuchs aufbaus muß sein, daß sowohl die Messung der Feldverteilung am Ort von einzelnen Zellen als auch die Beobachtung ihres Verhaltens während der Bestrahlung über mehrere Generationen ermöglicht wird. Die kurze Wellenlänge (einige mm) machte der präzisen Kontrolle der Intensität die Konstruktion von monomodigen Antennensystemen (z.B. Halbwellenschlitze) notwendig, auf deren Oberfläche man Zellen ortsfest mit zeitlich konstanter Intensität bestreifen kann. Dafür haben wir eine Querradial mit Rechteckquerschnitt (3,5 x 1,6 mm²) als Dielektrikum in einen Wellenleiter eingesetzt. Die Nadel ist mit einer Goldschicht bedeckt und mit Ausnahme beider Enden, um die Strahlung durch das System zu leiten und eines Schlitzes (0,4 x 1,7 mm²) auf der Oberfläche, durch den mit einer sinnverkehrt die Strahlung ausstritt.

3. Ergebnisse und ihr Vergleich mit theoretischen Konzepten

Mit dieser neuen Methode wurde eine an Zellen in Suspension gemessene frequenzabhängige Resonanz (um 4100 MHz) [8] untersucht, wobei drei unterschiedliche Intensitätsbereiche appliziert wurden (1 mW/cm², 1 mW/cm² und 3 mW/cm²; diese Werte beziehen sich auf die mittlere Leistungsflußdichte der Schlitzeinheit, ausgestrahlt von einer scharfen Linie im 42 GHz-Bereich mit nur 10 kHz Breite).

Erstaunlich konnte ein frequenzabhängiges Wachstum mit Reduzierung und Beschleunigung der relativen Wachstumsrate beobachtet werden. Die wesentlichen Ergebnisse lassen sich in drei Punkte zusammenfassen:
1) Im Vergleich zu den früheren Messungen traten deutlich negative Effekte (bis ca. 30%) symmetrisch zur Resonanzfrequenz in allen drei angewandten Intensitätsbereichen auf.

2) Die Lage der Resonanzfrequenz bleibt erhalten, wenn die extern eingestrahlte Intensität geändert wird. Die am Einzelzell gemessene Resonanzfrequenz stimmt mit der an Zellen in Suspension bestimmten überein.

3) Erstmals ist beobachtet worden, daß die Halbwertsbreite der Resonanz intensitätsabhängig ist. Wird die Intensität reduziert (über einige Größenordnungen), dann nimmt die Breite der Wachstumsresonanz ab [9].

Bei der Interpretation dieser Beobachtungen muß die Frage nach dem Wirkmechanismus zwischen äußerem Feld und biologischem Rezeptor offenbleiben. Aus physikalischer Sicht kann man spekulieren, ob der primäre Energietransportsprozess über die magnetische oder elektrische Feldkomponente erfolgt. Für beide Konzepte existieren theoretische Überlegungen [10], [12], die mögliche Erklärungswege aufzeigen. Erst neue Experimente können hier Antwort geben.

Vorausgesetzt, das vom äußeren Feld abhängige Verhalten des im biologischen System beeinflußten Resonators kann direkt oder indirekt über die Wachstumsänderungen beobachtet werden, dann läßt sich in Analogie der Hinweis ableiten, daß in unserem Zellsystem aktive Oszillationen existieren müßten, die mit dem Wachstum auf unbekannte Weise gekoppelt sind.

4. Dankesworte

5. Schriftum

IDENTIFICATION OF ELECTROMAGNETIC SIGNALS AS STIMULI IN ELECTROMAGNETIC STIMULATION OF LIVING TISSUE

by

A.M.J. van Amelsfort and T. Schuitem

Faculty of Electrical Engineering, EH 634
Eindhoven University of Technology
P.O. Box 533
NL-5600 MB Eindhoven
The Netherlands

September 5, 1991

Zusammenfassung

Abstract

The electric field strength, the magnetic field strength and the local density of dissipated electromagnetic power are introduced as basic electromagnetic signals with respect to the interaction of electromagnetism and living tissue. The spatial distribution of these signals are given for a four-layer limb model excited by a two-saddle-coil transducer, showing each signal to reach its maximum strength in a different area. This result is important for the use of a transducer as a stimulator. If the electric field is adopted as the stimulus in electromagnetic stimulation of bone growth, the highest amount of bone formation is expected in two areas at the axial ends of the saddle coils. The efficiency of this stimulator is improved by elimination of the DC component from the coil current.
1 Introduction

In investigations on the interaction of low frequency electromagnetic fields and living tissues, part of the confusion is caused by the variety of descriptions of the applied electromagnetic signals. This variety of descriptions is disguising possible health risks of the electromagnetic environment, and is also hampering both the advancement and a general acceptance of more beneficial applications of electromagnetic stimulation such as in fracture healing.

From the electromagnetic point of view, the unraveling of electromagnetic stimulation starts with the identification of possible electromagnetic signals. They are introduced in the next section, where the notion of 'electromagnetic stimulus' is also defined. As an illustration the relevant electromagnetic signals are presented calculated for a limb model excited by a saddle-coil transducer.

Finally, some consequences of a proper signal identification for the interpretation of experimental results or implementation of future research are discussed.

2 Electromagnetic signals

In essence, electromagnetic stimulation must be traced back to the electromagnetic force exerted on charged particles in translational and/or rotational motion. These particles are encountered in the molecules (electrons, protons) constituting the various tissues, and in the form of free ions. The force is the sum of an electric and a magnetic force, often referred to as Coulomb and Lorentz forces, respectively. It is

\[F = qE + q \mu_0 \nu \times H, \]

where \(q \) denotes the electric charge of the particle under consideration, and \(\nu \) its instantaneous velocity; \(E \) and \(H \) are the instantaneous electric and magnetic field strengths on the spot, respectively \([1]\). The quantity \(\mu_0 \) represents free-space permeability \((\mu_0 = 1.26 \times 10^{-6} \text{ Henry/meter}) \). The electric force is acting in the direction of the electric field; the magnetic force is at right angles to both particle velocity and magnetic field. In the absence of an external electromagnetic field, the electromagnetic force originates from the neighboring charged particles, giving rise to some motional state. During electromagnetic stimulation this state is changed due to the electromagnetic field from a transducer (coils, electrodes). Because of the above we take electric and magnetic field strengths as electromagnetic signals. As they are caused by these fields, accumulating electric charge and convectional electric current are merely related quantities, as are field potential, electric voltage, stored electromagnetic energy, and radiated electromagnetic power. Apart from the motion due to electromagnetic forces, the thermal motion of particles is of interest in electromagnetic stimulation \([2]\). In this connection the local density of dissipated electromagnetic power \(P_{\text{diss}} \) is adopted as a third electromagnetic signal.

We may now define an electromagnetic stimulus as the effective electromagnetic signal or effective combination of electromagnetic signals. The design of a stimulator for some application should be based on a knowledge of the specific electromagnetic stimulus. As long as such an approach is
not possible, there is a need for theoretical and experimental research on electromagnetic stimuli and their identification. An attendant complication is the mutual dependence of electric and magnetic field strengths in the time-dynamic case. As an illustration we next present some results of theoretical research on the electromagnetic signals from a saddle-coil transducer.

3 Electromagnetic signals from a saddle-coil transducer

Figure 1 shows a limb model with the model of a saddle-coil transducer. The limb model consists of four coaxial circularly cylindrical tissue layers, surrounded by air. The transducer model consists of two diametrically placed saddle-shaped current loops in the air section at some distance from the limb.

![Diagram of limb model and transducer model indicating numbering convention of layers and boundaries.]

The two coil currents are supposed to be time-harmonic with the same frequency, orientation, amplitude, and phase. The harmonic frequency is chosen at 4.3 kHz, being the maximum non-DC component in the current amplitude spectrum of an actual stimulator [3]. The tissue permittivities and conductivities at 4.3 kHz are taken from the literature [4,5,6]. Bone and especially muscle are seen to be anisotropic. Magnetic polarization of all media involved is negligibly small, so that the magnetic permeability equals that of free space. From these data, the three electromagnetic signals as they occur in the limb model have been calculated from Maxwell's field equations and the conditions at the boundaries at of two adjacent media [7]. For the sake of simplicity we choose one quadrant of the plane just between the two coils as the one where we shall observe the signals. There, the magnetic field is at right angles to the plane, whereas the electric field is tangential to it. The presentation of the magnetic field strength thus concerns only its amplitude distribution. For the electric field strength the directional pattern is needed as well. Because of the harmonic time dependence, the local density of dissipated power is given as the time-averaged value.
Table I. Model parameters

<table>
<thead>
<tr>
<th>layer index</th>
<th>boundary radius (mm)</th>
<th>tissue name</th>
<th>relative permittivity</th>
<th>conductivity (S/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>transverse</td>
<td>axial</td>
<td>transverse</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>marrow</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>bone</td>
<td>1000</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>muscle</td>
<td>125000</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>fat</td>
<td>50000</td>
<td>50000</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>air</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>air</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

coil parameters:
- radius: 75 mm
- flare angle: 1.6 rad
- axial length: 120 mm
- current frequency: 6.3 kHz
- current strength: 1 A

4 Results

The amplitude distribution of the magnetic field is shown in Fig. 2.

Fig. 2 Magnetic field amplitude.
The amplitude is seen to be at a maximum at isocentre of the coils (left back corner) and it decays to approximately one-tenth of this maximum value at a distance of about one coil-radius from the axis, and also at an axial distance of 10 cm from the centre. There is a central area with a radius of 2.5 cm where the field amplitude is less than 10% below maximum. At this relatively low harmonic frequency the magnetic field strength turns out to be almost independent of tissue configuration and frequency.

![Diagram of electric field strength](image)

Fig. 3 Electric field strength: (a) amplitude distribution, (b) directional pattern.

Figure 3 gives the induced electric field strength in the chosen quadrant. In contrast to the magnetic field, the amplitude distribution of the electric field is substantially influenced by the tissues. A maximum value is reached in bone at an axial distance of about 7 cm from the centre, close behind the common transverse plane of the coils. Exactly in the centre, where the magnetic field is maximum, the electric field is vanishing. The amplitude in muscle is seen to be relatively low. For other frequencies f under 50 kHz the electric field amplitudes are 2.3×10^{-4} times the given values. From the directional pattern in Fig. 3(b) the electric field in fat appears to be directed parallel to the axis, whereas it is pointing radially in bone, and curving away in muscle.
A third electromagnetic signal is the time-averaged local density of dissipated power (Fig. 4).

![Graph showing local density of dissipated power.](image)

Fig. 4 Local density of dissipated power.

Despite the strong electric field in bone, due to the relatively low conductivity the dissipated power has a low value in that layer. In muscle we have the opposite: low electric field amplitude and high values of dissipated power, especially at the muscle-fat boundary. If other frequencies under 50 kHz are considered, the power density equals \(5.4 f \times 10^{-9}\) times the values from Fig. 4. For an actual transducer with time-harmonic current, one obtains the field amplitudes from Fig. 2 and 3 using the actual coil-current amplitude, expressed in ampere-turns, as a multiplier. The power density is to be multiplied by the current amplitude squared.

5 Discussion and Conclusions

Now the question arises which of the above electromagnetic signals might be the effective one in certain applications. If the transducer is used for diathermic purposes, the density of dissipated power is obviously the effective signal. The electric field strength cannot be characterized as such...
because its distribution is clearly not representative for the power dissipation (Fig. 3 and 4). In case of the electromagnetic stimulation of bone there is not yet a consensus about the identity of the effective electromagnetic signal. There remains some doubt as long as there is no clear relation between the amplitude distribution and/or directional pattern of the electric field on the one hand, and bone formation on the other. From the field distribution in Fig. 2 and 3 it follows that the area of maximum magnetic field strength corresponds with an area of vanishing electric field and vice versa. These quantitative results may enable one to find a relation between distribution and bone formation. By positioning the coils in a way the bone fracture is located in areas of maximum magnetic field or maximum electric field, the differences in field strengths should lead to differences in experimental results, possibly pointing towards a signal as the effective one. Experimental results using electrodes and models for the response to electromagnetically stimulated ion transport in cell membranes support the idea to identify the electric field as the effective signal or stimulus [8,9,10,11]. Therefore, let us suppose the electric field amplitude to be the stimulus for bone formation. Because deviations in experimental results are then to be explained by amplitude deviations, results of our computer simulations indicate deviations in fracture locations to be more important than deviations in coil dimensions. The highest amount of bone formation is expected in the two areas at the axial ends of the saddle coils, because the electric field is maximum there. Bone formation in the area of the coil’s isocentre is expected to be suboptimal because of the relatively low amplitude of the electric field.

In several electromagnetic stimulators a pulsed field excitation is employed. Computational results obtained for time-harmonic excitation are then not directly applicable, except for the case where the amplitude spectrum of a pulse sequence occupies only a small band. In this connection, an investigation of the harmonic amplitude spectrum of the excitation of actual transducers is recommended. With coils, only the magnetic field from time-dynamic currents induces an electric field, indicating a possible DC component in the coil-current amplitude spectrum to be redundant. If applicable, the efficiency of the coil stimulator can thus be improved by elimination of the DC component from the excitation.
References

